2023 HL만도 & HL클레무브 자율주행 모빌리티 경진대회 계획(안)

1 비전, 목적, 효과

비전

- 한국의 대표적인 인공지능 활용 자율주행 모빌리티 대회
- 세계적인 자율주행 모빌리티 경진대회로 발전
- 자율주행 소트프웨어 인력 양성을 위한 세계 최고의 교육 시스템

목적

- 4차 산업혁명 시대 대학 간 교류를 통한 미래 모빌리티 인재 양성(SW중심대학 참여대학, 미래자동차 교육협의회 참여대학 등)
- 자율주행관련 기업이 보유한 지식 및 기술, 인프라를 활용으로 연구개발 역량을 갖춘 미래 모빌리 티 R&D 인력 발굴
- 모빌리티 SW 전문 인력 양성을 통하여 학생 기업 사회의 SW의 경쟁력을 강화

효과

- 대회를 통한 미래모빌리티 SW 인력 양성
- 대학 간의 공유·협업을 통한 학점 교류 및 공통 교육과정 운영
- 만도 및 HL클레무브의 미래 모빌리티분야 우수 SW 인력 확보 및 취업 특전 제공

2 프로그램 개요

- 프 로 그 램 명: HL만도 &HL 클레무브 자율주행모빌리티 경진대회 (HL그룹 자율주행 모빌리티 경진대회)
- 기 간: 2023.06월 ~ 2021.11월 말 / 약 6개월
- 주최 및 후원, 협찬
 - 1) 주최: HL그룹(HL만도, HL 클레무브)
 - 2) 주관: 한라대학교 스마트모빌리티연구센터(스마트모빌리티 ICC)
 - 3) 후원 : 교육부, 한국연구재단, 원주시, 한국자동차공학한림원, 한국기업가정신재단
 - 4) 협찬 : 도로교통공단, ㈜차지인, 다쏘시스템, Ansys, NVIDIA, Hailo
 - (주) 하나티에스, ㈜위더스, ㈜소네트, 디바인테크놀러지
 - ㈜스카이오토넷, ㈜위더스 등등

- 대회 종목 및 참가 자격

번호	대회 종목	ā	함가 자격 및 대상	참가 자격 및 대상
1	aMAP Pioneer Championship	아두이노와 행 로봇 경진	초음파센서를 이용한 자율주 대회	고교 (2인 1팀/ 최대 30팀)
2	aMAP Pioneer Championship	아두이노와 라인 카메라를 이용한 자율주 행 자동차 경진대회		전문대, 대학 1, 2학년 ,SW 중심대학 참여대학 (2인 1팀 / 최대 50팀)
1 3 1	aMAP Innovator	인공지능기반 1/10 스케일 모형자동차를 이용한 인공지능을 이용한 자율주행 자동 차 경진대회		대학 2, 3, 4학년 (4인 1팀 / 최대 50팀)
	Championship	인공지능기반 1/5 스케일 모형자동차를 이용한 인공지능을 이용한 자율주행 자동 차 경진대회		
4	aMAP Stride Championship	Racer 시뮬 레이터를 이	Category 1 : 모라이 시뮬 레이터 사용한 실차 기반 자율주행 경진대회	대학 3, 4학년
		용한 자율주 행 자동차 경진대회	Category 2 : ROS 기반 Gazebo 시뮬레이터 사용 자율주행 경진대회(신설)	(5인 1팀 / 최대 30팀)
5	SC(Startup Competition)	미래모빌리티 창업 경진대회 : 한국자동차공학학림원, 한라대학교 창업 지원단, 한국청년기업가정신재단		대학 (4인 이하 1팀/ 최대 20팀)
6	인공지능 도로표지판 인식대회	전국청소년 인공지능 도로표지판 경진대회(별도 공지예정)		고교(5명이하 1팀 / 최대20팀)

■ 운영방법 (차량 지원 받을 팀 Team-A) - 차량 body만 지원(부품 개인 구입)

1) 예선진행 : 자율 형식의 제작 계획서(ROS, C언어 사용 능력에 관한 내용 필수)

2) 본선진행 : 차량 지원 팀에 대해서 각 분야별 본선팀 선정

■ 운영방법 (차량 자비 구입 참가 Team-B 대상)

1) 예선진행 : 차량 구입 증명서(보유차량 사진, 구입 계산서 차량 구입 증빙 자료등)

2) 본선진행 : 차량 구입 팀에 대해서 각 분야별 본선팀 선정

SC(Startup Competition) 1) 예선진행 : 창업 계획서

2) 본선진행 : 예선 창업 계획서를 통하여 선정

3 세부일정

- 운영 프로세스

안내 공문 발송 및 □	예선진행 및 본선 참여자 드	본선 참여자 온라인교육 ID/PW부여	온라인 프로그램	당 경진대회 당 운영 □	우수자 시상
신청접수	선발	TD/PW무여 및 수강신청	운영	운영	시상

- 운영 세부일정

구 분	진 행 일 정	비고
• 모집공고	23.06.08.(목) ~ 23.07.06.(목)	
• 참가접수	23.06.08.(목) ~ 23.07.06.(목)	
• 대회 설명회	23.07.10.(월)	온라인으로 진행 / 개별안내
• 예선 개발 계획서 접수	23.07.10.(월) ~ 23.07.21.(금)	자유 양식의 개발 계획서
• 본선팀 선정	23.07.25.(화)	
• 온라인 교육	23.07.25.(화) ~ 23.10.30.(일)	
. 키라 베ㅠ	00 00 01 (恴) 00 00 10 (ㄱ)	예선통과자 차량 배포
• 차량 배포	23.08.01.(화) ~ 23.08.18.(금)	(차량 body만, 부품제외)
• 참가대학간 학점교류MOU	23.06.27.(월) ~ 23.08.20.(일)	2023년2학기 1학점
• 경진대회	22.11월중	별도 공지

[※] 세부 일정은 변동될 수 있음

- ※ 학점교류 : 대회 종목별 참가시간(교육시간포함) 30시간 이상 참여학생에게 1학점 부여 예정
- ① 참여대학간 학점교류 협약(신청서 제출) : 학점은 pass, non-pass
- ② 대회 종료 후 대회 주관대학에서 학점교류협약대학으로 학점부여 대상자 명단 전달
- ③ 학점교류협약대학이 학생들에게 1학점 인정

4 경진대회 내용

구분	aMAP Pioneer Championship	aMAP Innovator Championship 1/10	aMAP Innovator Championship 1/5
주제	라인 카메라를 이용한 아두이노 자율주행 자동차 경진대회	인공지능을 이용한 자율주행 자동차 경진대회	인공지능을 이용한 자율주행 자동차 경진대회
<u>장소</u> 온라인 교육 기간	원주(예정) / 1/5 온라인 8~9회	스케일 원주 도로교통공단 면하 온라인 10~12회	지엄성 사용예성 온라인 10~12회
본선 참여 인원	고교(30팀), 대학(50팀)	대학 50팀	대학 30팀
내용	 아두이노와 라인카메라를 이용한 자율주행 자동차 제작 장애물 인식 및 회피 알고리 즘 	ROS 개요, ROS 기초 프로그래밍, 영상처리 인공지능 프로그래밍 ROS를 이용한 인공지능 자율주행 학습	 센서 파싱 및 활용 경로 생성 및 정밀 지도 데이터 활용 횡/종방향 제어, 충돌회피 Mapping/Localization

도로교통공단특설 경기장

키트 및 예상 트랙

공통부품

- 아두이노 Mega 2560 보드
- 라인 전방 카메라
- 초음파센서(라인 또는 Area)
- 1/10 샤시

아두이노+C언어

- 초음파센서
- 엔코더
- 기타 센서

공통부품

- 아두이노 Mega 2560 보드
- 전방 카메라
- 초음파센서(라인 또는 Area)
- 1/10

ROS+ 인공지능

- 라이다 센서
- 레이더 또는 초음파 센서
- IMU
- Encoder

공통부품

- 아두이노 Mega 2560 보드
- 전방 카메라
- 초음파센서(라인 또는 Area)
- 1/10 OR 1/8 샤시

ROS+ 인공지능

- 라이다 센서)
- 레이더 또는 초음파 센서
- IMU
- Encoder

구분	aMAP Stride Championship-디바인	aMAP Stride Championship-1/10	미래모빌리티 창업 경진대회
주제	모라이 시뮬레이터를 이용한 자율주행 자동차 경진대회	ROS시뮬레이터를 이용한 자율주행 자동차 경진대회	자동차산업 관련 창업에 관심 있는 학생들로 H/W,S/W를 포함하는 창업 계획 경진대회
장소		원주(예정)	
온라인 교육 기간	온라인 11~12회	온라인 11~12회	 4인이하 1팀/50팀 예비캠프 : 한국청년기업 가정신재단 멘토링 : 자동차공학한림 원 멘토풀
본선 참여 인원	대학 30팀	대학 30팀	대학 50팀
내용	- 자율주행 시뮬레이터사용법 - 센서 파싱 및 활용 - 경로 생성 및 정밀 지도 데이터 활용 - 횡/종방향 제어, 충돌회피 - Mapping/Localization	 ROS 개요, ROS 기초 프로그래밍, 영상처리 인공지능 프로그래밍 ROS를 이용한 자율주행 인공지능 자율주행 학습 Mapping /Localization /Control 	- 창업아이디어 평가 - 제품설계 평가 - 상품화 전략 평가
제공 키트 및 예상 트랙	MAP(Racing Track) - Virtual Vehicle (KIA - Niro)		

5 강의 커리큘럼

차시	aMAP Pioneer Championship	aMAP Innovator Championship 1/10	aMAP Innovator Championship 1/5
_	자동차 프레임 조립 영상	자동차 프레임 조립 영상	차량 개조법
1	아두이노 설명 및 설치	임베디드 시스템 환경설정	임베디드 시스템 환경설정
2	모터 제어	아두이노 모터제어 및 서보제어 프로그래밍	아두이노 모터제어 및 서보제어 프로그래밍
3	서보모터 및 스티어링 제어	환경설정과 기초	환경설정과 기초
4	라인검출센서 1-1	아두이노 제어 프로그래밍	아두이노 제어 프로그래밍
5	라인검출센서 1-2	ROS를 이용한 하드웨어제어 프로그램	ROS를 이용한 하드웨어제어 프로그램
6	라인검출센서 2	OpenCV 영상처리 1	OpenCV 영상처리 1
7	I2C LCD Display	OpenCV 영상처리 2	OpenCV 영상처리 2
8	초음파 센서	LiDAR 센서 활용	LiDAR 센서 활용
9	라인주행 알고리즘 1	인공지능 프로그래밍 1	인공지능 프로그래밍 1
10	라인주행알고리즘 2	인공지능 프로그래밍 2	인공지능 프로그래밍 2
11	라인주행알고리즘 3	자율주행 프로그램 1	자율주행 프로그램 1
12	라인주행알고리즘 4	자율주행 프로그램 2	자율주행 프로그램 2

차시	aMAP Stride Championship-Morai	aMAP Stride Championship-1/10
_	시뮬레이터 설치 및 매뉴얼	시뮬레이션 환경 구축
1	자율주행 개론	ROS 기초 프로그래밍-1
2	ROS 설치 및 프로그래밍 교육	ROS 기초 프로그래밍-2
3	정밀지도 데이터 활용 및 경로 생성	초음파 센서 활용
4	GPS 센서 파싱 및 활용	LiDAR 센서 활용
5	좌표 변환 행렬	OpenCV 영상처리 1
6	횡방향 / 종방향 제어	OpenCV 영상처리 2
7	OpenCV기반의 차선 인지	Localization
8	LiDAR 센서를 이용한 장애물 인지	Waypoint주행
9	Adaptive Cruise Control 구현	장애물 회피 등 경로 계획
10	장애물 회피 1	인공지능 프로그래밍 1
11	장애물 회피 2	자율주행 프로그램 1
12	자율주행 프로그램 1	자율주행 프로그램 2

6 기대효과

- 4차 산업혁명 시대 주요 기업 '만도'와 협업하여 Future Mobility분야 특성화 역량강화
- Future Mobility분야의 타 학생들과 경쟁을 통해 자율주행 기술 공유
- 프로젝트 운영을 통해 Future Mobility분야 핵심기술 및 전공지식 함양